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T INTRODUCTIO! AND NOTATION

It has been known for many years that displayin7 thc

frequency components of a signal as a function of time is

a valuable slinal analysis techniaue. This is rarticuL2rlv

true o'r nonstationary signals, such as speech, whose

fre uency structure is different from moment to moment.

In the case of speech, the spectrograrh has een widely

use' to plot a time-frequency representation cf a snoken

signal.

In this namer two time-frequency functions will be

studied; the ambiguity function and the Wi ner distribution.

These functions are closely related and yet are dissimilar

enough so that each provides a valuable perspective to

signal analysis problems. Of particular interest is how

these functions characterize the Heisenberg uncertainty

principle.

§1. Notation

The following notation, definitions and theorems will

be used frequently.

a. Given f E L 2), the Fourier transform F of

f, sometimes noted as F = f, is defined as

(1) F(v) f f(t)e-Vt dt.

Here, as throughout this paper, unless othewise noted

the limits of integration are assumed to be from - to + .

The inverse Fourier transform is defined as



r ivt
(2) f(t) = 2J F(v) e dv.2

5. The L-norm of f is

(3) 'f = (J I f(t)1 2  dt)11 2

2_The L -norm of F = : is

) 2 dv)
(4) !F - ( -- J IF v)l dr 1/

c. Convoluction Theorem: If f F and g G are

Fourier transform pairs and h =f then the

Fourier transform of h is

(5) H(v) I F(r)G(v-r)dr = (F*G)(v).(H )2

d. Plancherel's Theorem: Given F E L 2() then

there is a function f L2 (,) such that F -

and 1! fi -- .

e. The Schwarz inequality for L 2-functions is

(r) 2 fg 2  2 2
I f91 < E f JI10J

f (t) is defined to be the Dirac measure having

the property that

[Accession P .
r

(7) f(t) (t)dt = f(0). 0 NTIS C..P.1J DTI:? '"..

7
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iI. AMBIGUITY FrfT'TOIU[ <

In this chapter the ambiguity function (Ar) will be

studied. Lome of its more useful nromerties will be state-

and oroved. The A, will be shown to arise naturally from

the outrut of a matched filter and its snecific arplication

to the raor -,roblem will be discussed. In the course

calculatinp several examples, an interesting theorem con-

cerninz the linear transformation of the coordinate axes

of the AF will be stated and proved. Finaliv, the AF

will be related to signal duration and shown to characterize

the Heisenberg uncertainty principle.

The AF was originally introduced in 1048 by Ville

in the context of a general signal analysis tool. Applica-

tion of the AF to the radar problem was given by Woodward

in 1950 [211. Subsequently, many of the properties and

theorems associated with the AF have been presented by

Siehert [161 and Wilcox [201.

§2. Definitions

The AF for a given signal f has several common

definitions. The definition most similar to the Wigner

2
distribution was chosen for this paper. Given f L C )

and continuous, the AF X of f is

r T ft _ T -Jut
X(u,T) f(t +2 )e dt.

Although the definition easily generalizes to a function of

to 2two continuous, L -functions, such a definition does not

i

/:



>ave asimnle Thys'ical internretation and will not he

sidiei. :f -7 s not continuous it will be treated as

a generalized function.

_ ther definitions are similar. For examole, in thc

7Ilcowin- section, the A' will be shown to be the outfit

,uiaton of a matched filter. In that sec'cn the

ambi~u't\' function will be defined as

r _-ut
(2) O(u,T) j f(t)f(t-t )e dt.

X is related to 0 by the formula,

-i uT
2(3) X(u,T) e O(u,T).

In radar waveform design, it is the mapnitude of the AF

which provides the measure of resolution and ambiguity in

Thus, in this context definitions (2.1) and (2.2) are

equivalent. in Papoulis' text the AF is normalized [12].

.is definition is not selected so that generalized functions

s.ay be studied.

?onsider now the expression for X in terms of the

Fourier tansfcrm of f. First, let the kernel function

y be defined. Given f,

(4) y(t,T) : ft + T)ft - )

2 t

Th A'of fis the Fourier transform of y for fixed

T. -'.ais 1, V T E7P
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r
(5) \(u,T) J (t, )elu dt

:hi- exnression is valid, if for each r E P,

y(.,T) E L1 (-). To see that this is the case, fix T T "

and use Cauchv-Schwar: in the following;

(') ) I( , ) = (j If(t + ) f(t - )l it)

r 2 [ 2 2",2,I (If I I (I f ).

J J J2 1

Since f E L (P), then y(-,) E LI (-T) for each T E P

and (2.5) is valid. Now define the two-dimensional Fourier

transform F of the function y;

r r -i(ut+vT)dd
(7) F(u,v) = ] y(t,T)eU dtdt.

Calculate this integral,

r" r -i(ut+vT)
F u , V j f(t +T.)f(t ~)e t dt TtdrJ)v 2]2

PJ f(r)f(r-T)e-iUr dr)e- 
vu/2dT.

If f = F then fr-T) - eiuT F(-u). Ey the convolution

theorem,

; (_Ii  -isT -T(v-u/2d

F(uv) ( 2r F(-s) e F(u-s)ds)e d

-iat
Since e 4--* 27(v+a), we may formall': write,

r
f(u,v) YF-F(u-s)(s+v-u/2)ds.

J

Hence,

4

... _ ... .-- -" -Ti ¢ i .- 
- ' i- • < -i. .. i. . .,. - i<-<.i- -. - -i . ". ., -' .- ." 2
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(S) P(u,v) F (v+u/2 ) 2)-TT.

The two-imensional Fourier transform is an iterated

integral, consequently (2.5) and (2.7) may be c 'net

-i;ve,

(9 Y(t,T) -t- X(u,T) -- F(u,v).

By Cauchv-Schwarz we see that for fixed u E W.

2 2dv2.(1?) (r F(u,v)jdv) 2 < (J F(v)l dv)
( I1) ( U , ) I v - j I N

Since f E L 2 C), by Plancherel's theorem, F E L 2CF)

and we conclude that for every u E IR F(u,.) E L I-).

We rr-ay then write from (2.9),

)1 u aVT

(11) , T- j F(v+ 2 )F(v -)e dv.

If definition (2.1) is used to define the AF of the

Fourier transform F, we have

(12) X (u,T) F(v +2)Fv-2T)e - i uv dv.
F

X, is related to XF  by the formula,

(i3) X (u,T) - ( xF , .
f FT (~)

Iv

Thus the AF of the function f is a scaled and rotated

version of the AF for its Fourier transform F.

,- . " "- - •"I '" " > " - . ' ' " ) . " i . ; . " ,. , .. . - i
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" 3. AF in Radar

In this section the AF will be shown to be the

ccoplex modulation function out of a matcled filter

receiver. This will help interpret the time-fresuenc-

olane on which the -F is defined and provide a foundati r

For an znterpretation of the function's nroperties.

A iradar (an acronym for R:_dio Detection And Rangin7)

trasOit s electrom-a,7netic energy which propagates in the

atmosphere. Depending on the reflective properties of the

obDects that this energy contacts, some of the signal is

reflected (or reradiated) back to the receiving system.

Based upon the difference between the transmitted waveform

and the reflected waveform, the radar system extracts

. information abcut the target. Of interest is the target's

location in range and its relative motion (radial velocity).

The radar will be modeled as a matched filter.

Although there are may ways to design a receiving system,

the matched filter is the most common because it has been

shown to be the optimum filter for a very large class of

problems. In particular, the matched filter has been

shown to maximize the signal-to-noise ratio in the presence

of additive, Gaussian white noise [10]. Also, it has been

0 shown to maximize the probability of detection usinT the

maximu.m likelihood criterion [4]. Finally, in a deter-

ministic sense, iven a known sional inout, the matched

filter has been shown tro be the imrulse response which

maxm.zes the output at a F ven time with respect to al



>cv in'~'~time-invariant systCems F1?].

a- .7mtlons are made in thi s IJevcl1':-me n. 7

~VCI tne r_ :a sig nal i

te n a t) a nd 0(t) vary slowly1 relative to th2e h--'

_ re-iuency ~.(A more Drecise der"inition osc

narro*.'oand may be found in reference 4). This perm-its

t--e cu: '_rsome expression (3.1) for the rad'ar sil7nal to beC

iW t
(2) f(t) c(t)e

where L s fixed, the complex modulation is

io(t)
(3) c(t) a(t)e

an:

(4~) Re f(t) s(t).

(.)is the complex signal representation of the s~znal

*s(t) and is discussed further in Appendix A.

The n-rrow" and assumption is also necessary to

repesntthe dIoprler effect on the reflected sipnal as

* 0ex a sh-Ift in frcec. The donpler aroltcnis

ceveome inA--eni:* 3.Fortunately, the narrowband

a:u.'lniL I-or almo,:st all rac ar am~plications. A

*application where suich, an assumption is not valid is in

3on-ar.

.
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Secondly, for reasons of clarity, the transmitter and

the target from which the electromagnetic energy is

reflected are modeled as point sources. Modeling the

transmitter as a point source is accurate since the

antenna characteristics do not effect the time delay or

doDler shift of the returned sLinal. Modelinz the tar et

as a point source ignores relatively small effects on the

returned signal which do not serve to clarify the meaning

of the ambiguity function.

7o begin, define the transmitted waveform

1wt(5) ft(t) c(t)e

The subscript t denotes transmitted. By definition of a

matched filter, the impulse response of a linear, time-

invariant filter matched to the transmitted waveform f is

(6) h(t) = f (-t).
t

If ft = Ft' then the transfer function of the matched

filter is

H(u) = Ft(u).

The radar sends out f What returns to the radar
t*

(assuming a target is present) is a time delayed, frequency

* shifted version of ft" The time delay T is related to

the range of the target R, by

(7) T 2R
,..V
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V is the velocity of propagation of the signal and T :s

the time it takes the signal to make the trin out tc the

target and back. The doppler shift u is related to the

radial velocity v of the target by,

(8) u -

w is the fixed carrier frequency in radians. The result-

ing reflected signal, when it enters the matched filter, is

i(W-u )(t-T(9) f (t) =c(t-T )e r r
r r

Subscript r denotes returned.

The radar designer wishes to maximize the probability

of detection, hence, would like to match the receiver's

filter to the return signal fr" But the parameters Tr r

and ur are dependent on the target and therefore not

known a Driori. Consequently, the designer must anticipate

a time delay Tm and a frequency shift u. Then the

signal to which the filter is matched is

i(W-u )(t-T )(10) f (t) :c(t-r )e m m
m m

Sy (3.6), the impulse response of the filter matched to

f is
m

-i(W-u )(-t-T )
(11) h (t) c(-t-T )e m mm m

The output y of the filter hm with the input f is

mr

I
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v(t) = (hf )(t)m r

f (x)h (t-x)dx
r m

ti(u-u )(x-T )_______-:( -u )(-t-T ±x)
r)c r r c(-t-r +x)e Y dx.c( X-T r CC--T+~

r. i(w-u )q-i(w-u )(TI+T -t- )
" v(t) = c(n)e rc(ri+- -t-T )e m r mdqr m

Let T t + T - T and u = u - u, thenm r r m

+iT(W-u ) r iu___

(12) y(t) e J c(rI)c(q-T)e dn.

Compare the integral on the r.h.-side of (3.12) to (2.2).

We see that

+iT(W-u)
(13) y(t) e m ®(u,T).

For a given target, u and T are constants,r r

W, u and T are fixed design parameters and therefore
m m

the AF, G(u,T), is a function of time (T = t+T -T rm r

Compare (3.13) to (3.2) and we see that y(t) may then be

interpreted as having two components; the carrier and the

complex modulation function O(u,T). If y(t) is viewed

as an information -bearing signal we might expect to

extract that information from the modulation function

O(u,T). How well that target information is recovered will

depend on the character O(u,T).

I

,* .. . . . . . . . . .. . . . . . . . . . .
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Resoluticn and ambi7uitv are two measures of how well

information can be extracte2 from the function 0. Con-

siier first resolution. Given design parameters u and

the AT at a specific time t is a function of the

tarzet parameters u and . Without loss of generaitv

r Tr . .-

we can study the 0(u;i) at t =. Then the origin of

the (uT)-plane represents the point where the radar

designer has precisely anticipated the reflected signal's
2

parameters. Points in 2 away from the origin represent

mismatches. The shape of the AF near the origin will

dictate how well one can distinguish the actual return

from (0,0). This is a measure of the resolution of f.

IMext consider the ambiguity of f. It will be

shown that all AFs have a maximum at the origin. Should

the AF have peaks away from the origin, then for a

given threshold a, the set E {(u,T) :I0(u,)l a)

may be disjoint components of the plane. Ambiguity then

arises in determining in which component the actual

returned parameters lie. Both concepts will be discussed

in greater detail in Section 6.

94. Properties

1. X has a global maximum at the origin;

0

(1) oX(uT)l 5 X(0,o), V (UT) E F,

T - iu t f ~ _ T .
Proof. Let g (t) = f(t+ 2)e and g 2 (t) = f(t- 2

0 Then by (1.6)
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= ij g1(t)7,(t)dtl 2 < I g (t)I 2 dt i 2 Ct)I

Substituti:n for i and F we obtain,

(2r 2 2 2X [ ( UT) !E f (j (t )I d ) (X ( 0,0))

7he result may be stated as IX(u,T)I j 2 since

(3) x(,0) f(t) 2 dt = 2

2. Symetry.

(4) a.) X(u,T) X (-U,-T).

Proof. Note that y(t,- ) = f(t 2)f(t+L) = y(t,T,. Then2 2

X(-u,-T) J y(t,-T)e dt = X(u,T). N

b.) In general X is a complex-valued function. If

f is real valued and either f(t) = f(-t) or

f(-t) = -f(t) then X is real-valued. That is,

(5) X(u,T) X X(u,T).

Proof. Only the case of odd symmetric f will be verified.

The case of even symmetric f easily follows. Note that

f real and odd implies

T) f(t + I)f(-t-T) = f(t + Tf(t- = y(t,T).
2 2 2 2

Then

r iut - iut
x(u,Tr) J y(t,t )e dt = Jy (-t, )e dt = X(u,T).

I'



q. Translations of f(t) and F(L).

a.) Let T be the translation operator, that isa

T f(t) f(t-a).

Then "

iau(x) X T  (u,T) e Xf(uT).
a

Proof. The result follows from the fact that

yF f(t,T) = y,(t-a,T).

a

b.) If TF(v) F(v-b) and g(t) -* F(v-b) then

(7) X (U,T) = e ibT Xf(UT) .

ibtProof. It is known that e f(t) ib F(v-b). hence

T T
ib(t +"- T-ib(t-1),

Yg(t,T) e 2 +f(t+)e2 f(t)
g 22

ibT
e Yf(tT)

f

The result follows by the definition (2.1).

4. N[odulations of f and F by simple sinusoids.

Let M be the modulation operator defined as
a

iat
Maf(t) =e f(t),a

and :'F(v) e ibv

iaT
(?) Tcen y,, (U,T) e i X (u,T).

I

I -

-. .' ° . . ." . .' ." ." -. . " . " j . '. . . . • . - . . , . . -* . : - " " . " " - . " -
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4

Flurthermore+f M F then

ibu
((u,6 ) e l f(ur).

Proof. The proof of (4.8) is the same as that for (L,.7),

an" the proof of (4.9) is the same as that for (4.6).

Concise statements may also be made for the AFs of

Fourier transforms. For example, property 3b may be

written as

-iau
(0) T  F(u,T) e X (U,T).

a

Proof. Let g -- T F, then from (2.13),a

X- F(U,T) 27TX (T,-u).
a g

From (4.7) and again (2.13) we conclude,

X- F(u,T) = 2re x f ( ,-u)
a

e X (UT).F

We conclude from equations (4.6) and (4.7) that the modulus

4
of the AF is invariant to translations of f or F.

This is a significant feature of AFs.

4 5. Multiplication of functions.

The previous results can be generalized to modulation

of f by any function g.

* Let h fg, then

"
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1r(,) (u, ) = (r,T)X (u-r,T )dr.

Fro.f. 1otice that Yh(t,T) = yf(tT)Y g(tTr) then

r -ut
Xh(U,T) = J "f(t )y g(tT )e dt.

HCld T fixed and use the convolution theorem and the

result follows.

6. Linear filtering.

Let

h(t) = (f-g)(t),

where g is the impulse response of the linear, time-

invariant filter. Then

(12) X h(u,) = Xf (ur)Xg(u,T-r)dr.

Proof. It is known that with h(t) so defined,

H(w) F(M)G(w),

where f F and g =. Use (2.11) to write,

I t u Iu) ivT
Xh(u,) r y J H(v+ 2H(v e dv

F ) F(v - !h(v + u)((v u) e dr.
-JFv 2) 2 2 2

The result follows from the convolution theorem and (2.8)

and (2.9) which state that for fixed u E IR

,,., - . .-. .. ., , . .,. . . " . . . ... , . - ... ..
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0u

X,(uF(v + }A) T(v- )
T2 2

U. U

Let F(t) -':'(at), for me a

(13) then X (u,T) a! .( aT)

7roof. Py definition,

X (u) F f(at +) f(at a )e ut at.

For a > 0 we conclude that

- r

X (U,T) f(r+-:-) f - -)e a - dr
CJ2 2 a

."'= Xf1 (u
fa , ar).

For a < 0 we conclude that,

1 u
(U,T) - X C-., aT).

,•a f a

So Va E IR,

.'-1[[2[[X (u,T) =Xf a )
g Jaj f a a

8. Invertibility and Uniqueness.

Given an ambiguity function X, the generating

S.- function f may be uniquely recovered to within a multi-

plicative constant c E f such that ICI 1.V<>
0°%

i l. :: .: :: .: .. < < . ... ., :.. , : - ... - - . , . -*. - -... --- .-,- .
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Proof. Assume two functions f and g generate the same

AF so that

x =x.
f g

Then by the uniqueness of the Fourier transform we can

conclude that Y, = Y That is

{T

(14s ) f (t +!.)2 f (t _L)2 = g(t + g(t--)

Let tI  t + !. and t2  t - 2 Then (4.14) is,
1 2

f ( t ) = E L.
g~l--7  = (t2)/f(t2) , t' 2 I,

Hence, Vt E IR, g cf and

f c-f L

cf f 6

1- 2 L

c- c so l=Icl

This raises the question as to how one identifies an

ambiguity function. That is, what are the necessary and

sufficient conditions for a function X(u,T) to be an AF.

This is of particular interest in radar waveform design

where one would like to establish the AF so that X- I
displays the desired resolution and ambiguity character-

istics. After inverting X. the designer would have f,

the suitable radar signal. Much work has been devoted to

this effort but the best that can be said about the

i-7
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sufficient conditions for X to be an ambiguity function

is that when the inverse Fourier transform is Performed on

X(u,T), with respect to the u variable, the result is

the factored form of the generating function Y(t,T). To

be more precise:

9. X (u,-) is an ambiguity function if and only if

uI r -i (tl+t 2

(15) f(t 1 t 2
TT- J X(u't 2-tl)e du.

Proof. The necessary and sufficient conditions are just

a restatement of the definition. Let t = - and
1 2

t2 t t + and rely on the uniqueness of Fourier transforms.

10. The squared-magnitude of X has the unusual property

of being, after a coordinate transform, self-reciDrocal

in the two dimensional Fourier transform. That is,

(16)2 -i(uv+tT) 2
J IXuT)l e dud T 2rIX(t,-v) I

Proof. Use definition (2.11) for X in terms of F 1 ,

and property (4.4) to obtain,

(17) x(u,) X(-u,-T) - F ) F(v +) e-T dv.

Use this expression in the expansion of (4.16) which follows.
J

******

-- ."
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rr ? -i(uv+T t) u -

e " U V +

• ~-i(uv+ t) u
Se c u: .

:2e can -e o- varlahles r x + an( _ u -en

(15)

rr., 2 -i(uv+tT)

xj(UT e
fi f(r)F(s)( f(r-T)eiT(£+ T)( 2 i F4 s+u)e iu(V)u)+ d

The first inner intezral is,

r
SiT (s+t) -ir(s+t)

.f(r -T e dT e F(s+t).

The second inner integral is

1 r -iu(r+V)d is (r+v)
2- F(s+u)e du e f(r+v).

Substituting these back into (4.18) and rearranging terms,

we see that

Se (UV+tT)dudT xf (t, -v) F(V t).

The result follows from the formula (2.13).

11. The radar uncertainty principle.

Integrating yIx 2 over all of IR 2 we have the

interesting result,

* (19) 2 IX(uT) 2dudT Ix(0,0) 2

A
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Proof. This is a special case of (4.1F) with v t 0.

This property can be interpreted as the "conservation

cf aooizuity property." It says that the best a radar

.'encr can do, 7iven a specific energy constraint, is tc

nie ambi-uites inherent in f to the unused part:

of the (u,T)-ilone. Another interiretation is that the

a,-unt of a7m.igmitv in f is invariant over the class of

functions whose -nor-. is the same. This will be further

discussed in Sec-on 6.

S5. Yanles of AFs.

In this section examples of AFs will be calculated.

Each illustrates some of the properties of Section 4. The

siznificance of some examples will be discussed more fully

in Sections 6 and 7.

E xampl for t < T

Let f(t) 7,-(t) =

0~ elsewhere.

Then by (2.4), y(t,T) = PT(t +1)P (t Y(t,) is unity

T 2 -T 2..) ~,) i nt
inside the rhombus below and zero elsewhere.

T

Fi7ure 1

fI - i~ " ii _.i "~ ~ .. , i. -i_-" "" " "" " "''"""" " "



I r -jut
",(UT =I Bt,mr)e dt.

J

. T 2 [-2T,27] the limits of intefration are

- + T-/ -c T - T7/2. Thus

rT-' /2 jut
J-T+ / 2

ant we conclude

'2s-[u(T h]2 for ITI < 2-T(I) > (u,T)

0 for TI - 2:.

:.otice that for T = 0 and u 0 we have

2.-
X(u,0) -2in- uT for all u E IF,.

and'

,f2T - TI for TI - 2T
X(CT) =

elsewhere.

These are sketched in Figure 2.

<. q-T

Fi rure 2

. ... .. .
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" "" iat
* . Example 2. Let f(t) = e t (t)

The using property 4 and the previous example,

eiaT 2s (Tu(T -_[)] for T S 2T

(2) (uT) 

2

for IT 2T.

".. -- iat
Exam.Dle 3. Let f(t) e for all t E P.

Then, formally,

(3) X(uT) e I eia(t+T/2) e-ia(t-T/2) e -udt.

Recalling 1 -- 2-r6(v), (5.3) is

X(u,t) 27Te aT 6(u), VT E IR.

This means that the AF of f concentrates all of its

mass on the u = 0 axis. Hence, f has perfect resolution

of the u variable, but no resolution of the variable T.

Example 4. Let f(t) : s(t-nT),
n=0

(1 for t E [0,2]
) '2

where s(t) =
0 elsewhere.

T
f is a coherent train of N +1 pulses of width -, and

T
separated by a gap . (Figure 3).

02

0
- " - . .
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Figure 3

There are several references for calculating X. The most

general is in Bird [2]. The following is a special case

of Vakman's calculation [19].

First calculate the F.T. of f.

rN -iut N ivnT
F(v) s(t-nT)e dt = [ S(v)e

J n0 n=0

Then from (2.8) we see that

u u

F(u,v) F(v +F(v - )

.U

- v ) u ivT(m-n) -l[T(m+n).S S(v *u )S(v -!h e e

n=O m=O 
2

By definition (2.11), the AF of f is

ITUXT  r~ .uT ____

u-i--(m+n)i( un))eivT~i-n) dvv
X(u,T) e 2 1- f S(v +U) S(v - u) vm- e iTdv.

n=0 m02

The inner integral is the AF of s, where s^ S,

I" : :. .: ( . . - ... . .. .. . . ......-.
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evaluated at T - T(n-m) i.e.,

I' uT
X(U,T): e X (u,T-T(n-mn))

n:O m:O s

Change the variable n for the variable k by letting

k n - m: then k takes on integer values - to ', anJ

.ukTTT -I-- I
X(U,T) = X (U,T-kT)e 2 H e-imuT

Define

.uT, 7-i~~k -muT

S(u) e e
m-O

The sum is easily computed so that,
uT  

TTi2(k+. sin[u(N+l)T/21
k = e) sin 2

2

and

X(UT) x X (u,T-kT)k (u).×(UT) = - N s k

Compare the mangitudes of !k(u)I and IXs(u,0)I. For

large T:, Kk(u)Z is a periodic function having spikes

of magnitude + i. (Figure 4 ).

.. ,. . . . . . • . .
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Z1, 4-f

r TT

Figure 4

For lare N, Ix (uO)! is dominated by K kI at the

points 2nT = 0 and n odd. The zeros of 1xs(U,0)j

2n7
at 2 n even cause the AF to vanish there. Figure 5

is the level curves of X.

T

Figure 5

I

- "." -." -.... •- i i - " • " '- i, ,' -. " ." . " " -':i'
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§ 6. Resolution and Ambiguity

The concepts of resolution and ambiguity were intro-

duced in Section 3. These two ideas will be studied in

detail in this section. The level curves of the AF near

the origin will be shown to always be elliDses and several

examnDles will be calculated.

§6.1. Resolution

A more precise definition of resolution than that

introduced in Section 3 will be used here. The resolution

o- fis the width of the AF at the origin along the

coordinate axes. The smaller the width, the better the

resolution.

Since we are interested in the shape of X(u,T) near

the origin, let us arproximate X(u,T) by a truncated

2-dimensional Taylor expansion about (0,0). Let X be

an arbitrary AF and f be the corresponding generating

function. Let subscripts u, and T denote partial

differentiation. Then by the definition of the Taylor

series,

(1) X(u,T) X(0,0) +X (0,O)u +X (0,0)T + Xuu(0,0)u 2

u T 2u

+ 00)r+1 2
+XUT CO)u + X (0,O)T +

It is assumed, and will be verified later, that for the

given function f, X X Equation (6.1) may be

normalized by dividing through by x(0,0). This was shown

2
in (4.3) to be 'f'' . Henceforth, assume that we have

* i . - . ." ". . . . '
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norhe function . f an' therefore

yc(,D) z 1.

CalcuatD:n cf the first -artial derivatives is

stralirhtforwar2 and,

~2
(2) x (33) = -i tl f(t)j dt.

Define

(3) a = tlf(t)! dt

then

(4) a iX (0,0).

Ultimately we only will be interested in the magnitude

of x. From (4.6) we know

Cs) Ixf(uT) Z IXr f(u,t)!
a

Consequently, without loss of generality, assume the

function we are considering in (6.1) is f(t-a). In that

case,from (4.6) we calculate the partial derivative of the

corresponding AF as,

Xr,× (0,0) [elau x (u,T)l - ia + X (0,0) = 0.f TuT;u fu u=T-0 u
a

Similarly, using (2.11),

(6) x (0,0) = _2 { vIF(v)j2  dv.

Define
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(7) 1  F(v) 2 dv -iX (0,0).

Assume that the F.T. of the function f which we are

considerinr in (6.1) is suitably translated by b, then

it can be shown that,

x (0,0)

T

Henceforth assume f and F have been so translated and

the first partial derivatives vanish. (6.1) may now be

simplified to

(0) 1 X (O')u 2 +X2 2)T + ... .
() u)= + Xuu((0,0)uT +I (0,0)T2 +.

The second partial derivatives are

r 21f t 2
(9) X (0,0) = -i t f(t)1 dt

and

(10) X (0,0) v2  2 dv.
TT 2r

The mixed partial derivatives are

(11) Xu (0,0) A- v[F(v)F-TvY -F'(v)7(- ]dv

and

i r
(12) X (0,0) = -- t[f'(t)f(t)-f(t)f'(t)]dt.

'u 2

Notice using the transform pairs, -itf(t) -- F'(v) and

f'(t) -- ivF(v) and Plancherel's theorem that

(13) Jv[F (v)F'(vY-F'(v77 ]dj'v = t[f'(t)f-(-t-(tf(')T (t)-]dt.
4 (13)

.6- ' i " ". ' - - > - ' ' -. ..1 --6 -6 .-. - " " ' ' Z ' i .i " .< .2> . : 2 - . '
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Hence X (0 0) XTu 2
UTTu

Let the constants in (6.9), (6.10) and (6.11) be

Sefine - - anr -; res-ect ivelv Then the

Taylor ex'ans-Lon up to the quadratic ter-s in ( .8) mav

be written,

1 2 2(14) X(u,') = 1 -d u + 2puT +D«].

For X ecual to a constant, this is the equation of an

ellilse in the (u,T)-plane. That is, given c E [2,11,

the level curves of X near the origin are

(15) 2 2 2 2 2

du + 2UT + DT C

It is known that when v' 0 the major and minor axes

of the ellise in (6.15) lie along the coordinate axes of

the (u,T)-plane. To see what conditions need to be met

to have p = 0, let

f(t) a(t)e i G(t)

and F(v) = A(v)ei (v)

By (6.12)

r 2
= -i ta (t)O'(t)dt.

by (6 .11),

p= f J vA 2 (v)¢"t(v)dv.

Hence p 0 if f is real or F is real.
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I

Let us apply these results to some specific AFs.

Recall Example 1. Since f is real-valued, Li 0 and

the ellipse around the origin has its axes on the coordinate

axes. In this case it is simpler to use the zeros of the

AF7 along the coordinate axes than to calculate d2 and
2

7-. Refer to Figure 2 and we see that the width of the

main lobe is

A-u: 4T

and Au 27/T.

Therefore, for a large pulse width T and a given c,

the level curve near the origin is depicted in Figure 6a.

'6.

JC

Figure 6
4

Hence, the larger the pulse width the better the resolution

of u (target velocity). Conversely, the shorter the

pulse width the better the resolution of the T variable

(target range) (Figure Gb).

w
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-e showed, in Example 3, a signal that exists for all

time results in perfect resolution of the variable in

(don.ler si,_t). This is equivalent to letting the 7ulse

width of Example 1 go to infinity. The conseauences are

intuitively satisfying for if the transmitted signal i

sinle frecuency for al! time thenanv shift in fre-iuenc' C

the returned signal would be readily apparent. Conversely,

an attempt to resolve the time delay variable from such a

signal would be futile.

The last example concerning resolution will demonstrate

how to simultaneously achieve good resolution along both

axes. The idea of using a linear FM signal to achieve

such resolution characteristics was a major development in

radar technology. Linear FM signals solved the problem

of extending the range of a radar system without concurrently

degrading range resolution.

Example 5. Let

ia2

g(t) e f(t),

where

f(t) = P_(t) ac in Example 1.

Use definition (2.4) to calculate the kernel function

Y (t,T) as

iaTt(16) y (t,T) = e yf(t,-r).

Then

II

• ".' " " - .". .- " ". . . . < . " . ". " " '. ..
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r
X g(UTY) T e -(t,T)e- dt X f(u-a',T).

? s n ( - for IT I 2T
- sin[(u-a)(T

I' ( ,T) =
elsewhere.

is not real-valued and it can be shown G(v) is

nct real-valued, hence, i1 9 0. The level curve of the

AF is a rotated ellipse. Again it i., simpler to

calculate the first zeros along each axis than to

2 2
calculate d and D Let T 0 , then

IX (u,)I '-I sin(uT) I
g, u

So the width of the main lobe along the u axes is

Au = 27/T

This is unchanged fromExample 1.

Let u = 0, then

IX (0,2)I sin[at(T lTi)]
g aT 2

For small T

T T,
2

4 hence the first zero along the T-axis is approximately

T/ra and

AT 2T/]a.

- . - . ,. ,. .° . .. . * . • - , . , , .
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Consecuently, for a > 1 the resolution o: T has 1,een

improved. The level curve for given c ani large T

is depicted in Figure 7.

L)
L

C

Figure 7

§6.2. Ambiguities

The AF is also useful in characterizing the inherent

ambiguities in a given radar signal. Should a given

function have peaks indistinguishable from the peak at

the origin, then identifying the point which corresponds

to the actual target parameters becomes unclear.

Consider Example 4. Here f(t) is a pulse train.

The Pulses are of width T/2 and are periodic with

period T. Intuitively, one might reason that if the

first pulse leaves the receiver at t = 0 an-' does not

return until t = 2T, then it will be unclear whether the

returned pulse is a reflection of the first pulse trans-

mitted or the second pulse transmitted at t = T. The

reflected energy must return to the receiver before time

i :: ". . . ' .. . " " -. . -

"'" " " - - " " " " " . . - ' . . - - - , ,, L , ,,, 2 .,. 'J ,,-



L T frthe receive"cr to unamLbi Fuousj- lvieaEs.urc the t ;,,

dea o h returne-d oulse. he AF' (F -rc 5) .o _-

Ize tos unerant ecause it has reak'-s alon-e the T-a-

e n~ce C, i 7 2±

o: 2 ~raterzesuncerta-n:'

os; notL So(- r e~9 r'rn h~

() n i'solation. Hence the AF ' ves t".e

J.~K~Vt5J3 too- l to c-haracterooE'oon, tr

e Z 7 1toe s in cotT nar a net e r7

n

0 I 2T .31

Figure 8

To derive the AF for f, calculate the kernel as

y~tT) -(t+ nT) ~ (t +1 -rT).Y~,)6t+2 n.2

Y(t,T) is zero except when T kT, k O±...

Therefore,



. .L T T. .

*

The A? > the F.?. of y(t,i) ant it is known that

C CIO
(t7) 22n

Consequently for each T = ki, k = 0,±l,... (u) is

an im:.nulse train ani the AF is a lattice of points.

(FLaure ).

00X2,) P. 2nir
T,(,T= Z -L(u T - nT).fT T '"

* £4
IT

Si 7ure 9

6 
9, "i : : 'i : " : ! f " : --: ; : : : ! : , . : -. : . .-. : :: : .. £ : .: : : ::.: : 1
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§7. The AF as a Signal Analysis Tool

The AF will be studied as a general analytic tool

in this section. The quadratic phase character of the AF

will be Feneralized and studied. It will be shown how the

AF characterizes the Heisenberg uncertainty principle and

several examDles will be calculated.

S7.1. Decomposition of a Linearly Transformed AF [12].

Let X be a known AF of a given function f. Let

L be a real-valued matrix,

(1) L ( b

c d

Furthermore let L map the coordinates (u,T) to (U,T),

i.e.

(2) = L( .
T

Then define

(3) X (u,T) = X(U,T),
L

so XL(uT) X(au+bT,cu+dT).

Theorem. Let X be the AF of f and define XL as in

(7.2). XL is an AF if and only if det L = 1.

Proof. First the necessity of the condition will be

verified.

Since L(0) = 0, then IXL (0,0)1 =X(0,0)I. Therefore

" L

4 "ii i . " i i ;. i. 4 , > . . .
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from (4.19) we conclude

('4) F IX(u,T) 12 dudT FIi IXL (u,T)l 2 d Ld T.

By definition (7.3) we may write

(5) FFIX(U,T)I audT ddT

Assume the Jacobian does not vanish in I 2 then we may

write

()ff 2 X(Xu) 12 F~ j 3 (U,T) 1UT u,S L(u,T)J dudT,

where the Jacobian is

[(u,T-- = deta b) ad - bc.
c d

Thus (7.6) is only true when ad - bc = 1.

Next, given that the det L = 1, it will be shown

that XL , defined in (7.3) must be an AF. This will be

demonstrated by decomposing L into "elementary" trans-

forms which are equivalent to operations on f which do

not alter theintegrability of f. Therefore the resulting

function, fL' may be used to generate an AF.

Let L be a matrix of form (7.1) such that det L 1.

Let P be defined for some a E IR,

(7) P(a) = )
0 1

Let Q be defined for some 8 E IR,

.. ., . ,. . , . .. . 7 . ... . ,. -.. ,.-,. .§iK,, . . -,
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0

QQ

Cs () Q(f3) = (2•

Then if c 9 0, by substitution it can be shown,

(9) L P(a)Q(5)P(y),

where Q -(1-a), 5 = -c and y 1(1-d),
C C

If b 9 0. then it can be shown that

(10) L Q(c)P(S)Q(y),

where a = l-d), = -b and y = 1(1-a).
b b*1

If both b = 0 and c 0, let a = , then

4 (11) L(k) = ( 0 k

We will show that for some X E JR,

(12) L(k) Q(a)P(C)0(Y)P(-X),

where a = -(k-l), = kX and y = -C,-1). This may
kX kX k

- be shown by fixing X E IP and noting

(13) L(k)P(X) = (0 k

This is in the form for the decomposition (7.1C). Equation
-1~~~(7.12) follows by noting that P (A) =P-)

0

.- .
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Thus L can be decomposed into elementary transforms

of the form P and Q. Examnle 5 demonstrated that

transform P was equivalent to multiplying f by a linear

FM signal. That is, given a function f, its AF, X,

and the transformation P(a) as defined in (7.7), then

(14) X (u,r) : X (u-- ,T )P

and
i g~t 2 :.

(15) f (t) f(t)e2
p

Similarly, given f, X and the transform Q(6)
IP

defined in (7.8), we will show that

(16) XQ(U,T) X (u,T-u),

and
1 1 2

-t
(17) f (t) (2TT8) 2 f(t) *e 28

Q
.12 .2a-t -1v2 

Use the F.T. pair e 2-1 -T2 e and the

convolution theorem to calculate the F.T. of f asQ

F (v) (i) F(v)e
Q

Then by definition (2.11), the AF of f isq

i-(v ) -i-.(v +u) 2

X (U,T) - ]F(v + )F(v -)e e e dv,
Q~ 7T i2 2ee dv

1 u u eiV(-u)
-- j F(v +) F(v - dv

- X(u,T-u8).

.- :: : .-. - :. - . . .. . .- . .. ... .-., -,. , . . -. .- . . . .- .. ... .
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and f are still L2functions therefore XL

is well defined and the theorem is proved.

An interesting application of the theorm is in

property 7. There we saw that if

(18) f (t) f(at)
L

then

1 u

(19) XL(UT) 1 a au).

This is transform (7.11). Therefore, according to (7.12),

1 2 1 2 .2 .1 2
-It --t i-t i-t

(20) f(at) A(((f(t)e e)e e 2 e

where a = - (a-i) 8 aX, y = (- -1), X is
aA aX a

arbitrary, and A is the constant of proportionality

dependent on a and X.

Example 7. From (2.13) we know X (U,T) = 2r Xf(T,-u).
Ff

Thus the AF of F results in the linear transform of

the AF of f represented by,

L = 0 1)
1 0

From (7.9) we may decompose L into,

L =P(-I)Q(1)P(-I). .

Therefore a real-time spectrum analyzer may be constructed

as follows;



4f2

2 2 2

This is depicted~ in Figure 10.

F(V)

Figure 10
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7.2. Central Moments and the Uncertainty Principle

Signal duration and bandwidth are frequently use'L

quantities in signal analysis. Perhaps the most common

way to characterize these features is in the moments of

inertia. In the followin7, the central moments will be

shown to be the derivatives of the AF at the origin.

The shane of the r-F will be related to the Heisenberg

uncertainty p rinciple and several interesting examples

will be presented.

In most signal analysis applications, f(t) is the

complex representation of the real-valued signal of

interest. Therefore the central moments will be defined in

terms of i . Define the energy of the function as

(21) m0  1 r lf(t)J2 dt.
J

By definition (1.3) and equation (4.3) we also note

(22) m0  'fl2  x(OO).

The center of gravity is defined

22)r tf(t) 2 dt

0

We will henceforth assume m I  0. This is a valid

assumption because we may always translate f to make

0. Finally, define the moment of inertia or effective

signal duration as,

I "

II
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4

r f t 2 dt

(214) 2  = r 2 t ro "

2
This was defined as d in Section 5. FN definition

(1.3) we may also write

(25) m, -'' tf(tY'2  = d2z Tn0

Similarly, the moments of F f are defined;

Sr 2 dv2
(26) M - jF(v)! 2 Fl x(0,O),

(27) M, = 1 r vF(v) 2 dv - 0 (by assumption),' 2J M 0  asmpin

and

(28) 1 2 F(v)12 dv 1 !F(v)I! 2  = 2 .

2 M 0 MO

Recalling equations (6.9) and (6.10), we see that

(29) m 2  -xuu (0,0)

and

(30) M 2  - -X (0,0)

Thus the width of the AF function along the T-axis

depends on the spectrum of the generating function and the

width along the u-axis depends on the duration of the

signal. The Heisenberr uncertainty principle (UP) is

(31) !tf(t) 1!2 'vT(v) I2 > f,2

or

I
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"2

.,- e c"urvature of at the or- in is constrained

'""tue '.P;

Ui. UT T 2 ".

Unlike the Wigner distriuion of the next chapter, this

does not restrict X from becoming concentrated about

the origin. Klauder demonstrated a compressible AF in

19%o [7].

We next consider the signal duration and bandwidth
4

of the function f L fL is the generating function of

the linearly transformed AF, XL , defined in (7.3). To

simplify notation, given f, let the moments of inertia

of f and F be

(314) w m (0,0) (from (7.29)),
2  uu

and

(35) 2  X-X (0,0) (from (7.30)),

respectively.

Recall in Section 6 we defined

= x (0,0) = x (0,0).

This is also known as the mixed moment of f or F.

Note the corresronding moments of f and F as w

L LL!

WL and t • Then using the chain rule we can differen-
[ L
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tiate (7.3) to show

( 6 L  2 2W
(36) WL a 2w + 2ac p + c W,

(37) WL  b2w + 2bd P + d2w,

and

(38) L abw + (ab+bc)o + cdW.

These relationships will be applied in the following

examples.

Examle 8. Let r E L 2(IR) and real-valued. Define

(39) f(t) = r(t)e

The F.T. of f is
2

iqt 2  iv Y)v 2

2 ivt 2_ r 2 2(40) F(v) = r(t)e e = e J r(t)e dt.

This is not, in general, computable in closed form.

Usually a is assumed large enough so that stationary

phase arguments may be applied. Then

1 -v
(41) F(v) 2 77 e 2a r(V)

This may be used in (7.28) to approximate the effective

bandwidth of F as

(42) r = - r v 2  F(v) 2 v = - v2 Ir(v)1 2  dv 2cv 2

F 2J v1 J a a v r

where w was defined in (7.24).
r

4
. ". - . . . . .. . -. . -. • . . ". . , - . • - . . " ." , ,.. . - . - . , -,-
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We may use the results of the previous analysis to

get an exact expression for effective bandwidth. From

equation (7.15) and (7.7) we see that the transform

matrix is P(a), and a = 1. b = -a, c 0 and d = 1.

Hence from (7.37) we see that

2(43) W L  A w r 2 r + W r
- r - r

r is real-valued, hence 1 = 0 and
r

2

(44) = a w

For large a, the equation (7.44) agrees with the approxi-

mation (7.42).

Consider equation (7.43) as a quadratic in a. For

fixed r (not necessarily real-valued) w 1r and W
r r r

are fixed and (7.43) is a parabola opening upward.

For

ur 0; min WF(a) W at a 0 , and for

0; min W (a) W 2 /W at a }j /W
r F r r r r

Hence we see the effective bandwidth decreases for a

r > 0 (Figure 11).

0

. . ..
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Exaple 9. Let r E L2(LR) and real-valued. Define

-i2t 2  i_ t 2 .
(4c) fL) =[re 2 e1 e

(LK)L t) [r(t)e2 e2

Using (7.7) and (7.8) we see that

(46) L P(-o)() ( I-aB a )
and

(47) X L(U,) Xr (U-aOU+aT,- U+T).

r is real, so n 0. Fix a E IR then bv (7.3),

(48) w = L() (1-a)2 + S2

L we WbtWr

Expanding we obtain,

S
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(49) WL(: ) 7 (:J w + ': )2 - 2aw P + w
Lr r r r

Ll

This is a quadra- _c orening upward with a minimum at

CLw-( 5 C ) _ r
m~n 2

r r

2For t w >> W , this may be approximated as
r r

=P 1/a i
5) min 1+W / 2 -- a

Hence, we see that although a signal disperses when passed

through a quadratic phase filter, in this case we get some

signal compression (Figure 12).

15

/I

II

Figure 12

From (7.51) and (7..) we find the minimum signal duration

to be,

W
r

r min a

4 I
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III W!.:'3ER DISTRIBUTION

In this chapter the Wigner distribution will Le

presented. It will be defined, its salient prcperties wi;1

be stated an, oroved, and examies, which <ii serve to

illuminate those T roperties, will be caisu:atcd. Fin:

some interesting results concernino th< somenos c t:.e

Wi~ner distribution (WD) will be presented.

The Wigner distribution was originallV _ntrodced "n

the context of quantum mechanics in 1932. It was reintro-

duced by Ville in 1948 as a tool for signal analvsis. The

most recent appl~cations of the Wigner distribution have

been in the field of optics. In 198% Claasen and "echlen-

brauker again studied the WD with regard to its potential

as a signal analysis tool [3].

§F. Definition

The :D is defined for continuous functions f,

.ma rring the real line to the comnlex plane, which are of

finite energy. If f L (R) or if f is not continuous

then f will be considered a Feneralized function and

onerations on f will be in the distribution sense.

The WD is defined as

(i) W(t,v) f(t + )f(t -)e dT .

Note that the definition is stated as an "auto-Wigner

distribution." This definition easily generalizes to a

"cross-Wigner distribution."

0 . - _ . . . . _ . P . ' " " 1 .> ...-
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As in the case of the AF we define

(2) Y (t T f(t +t
22

Then for fixed t, the WD is the Fourier transform with

respect to the variable T of the function y(t,T). That

is Vt E R,

(3) W(t'v) y I (t'T )e- iVT dT.

Let F f. Then it can be shown that

(4) Wf (tv) = 2W (v "t).

If we define

(5) (u,v) F F(v + )F(v -- )

and recall (2.6), which defined r(u,v) as the two-

dimensional Fourier transform of y(t,T), then

(6) Y(t,T) -- w(t,v) -- (u,V).

This says that the WD is the intermediate result of the

iterated two-dimensional F.T. of y(t,T) when the

transformation with respect to T is taken first. It

was shown that for fixed v E IR F(-,v) E L (IR) hence,

1 u u iut(7) W(t'v) -- [ (v +.!)F(v -g e du

2 2 P2
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9. Properties of WD

The properties will be listed in somewhat the same

order as in the previous chanter. Wvhere proof of the

property is similar to the argument for the AF, the

property will be stated without proof.

1. Global Maximum

The WD has global extrema at the orIgin only if f

is real and symmetric. This property does not necessarily

generalize to the "cross-Winner distribution." If

: and f(t) = ±f(-t) then

(l) lw(t,v)I - w(0,0) l

This property is stated in terms of the modulus of

the WD. Although the WD is always real (property 2),

its value at the origin may be negative, e.g., the case

when f is odd.

2. Symmetry

a.) The WD, regardless of the nature of the function

f, is always real valued. That is

(2) W(t,v) W(t,v).

Proof. Note that -tO y(t,-T). Then by definition
0

(8 *3)

~ TTD+1vT ri VT
tTC{77YT~ dT -Y~t,-T)e dT W~t,V).

0

0i
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This property generalizes to the "cross-Wigner distribution"

fsince yfg = Ygf*

b.) If f is real-valued and symmetric about the

origin then,

( ) !(-t -v) = W(t,v)

Proof. Consider only the case f(t) -f(-t). Then

y(-t,T) f(-t + L)f(-t -1) = f(t -1 )f(t + Y(t,-)

2 2 2 2

The property follows from definition (7.3).

3. Translation

a.) Translation of the function f results in a

translation of the WD. Let T be the translationa

operator. Then

(4) WT f(t,v) - W (t-a,v).
a

Proof. Notice that yT f(t,T[) - Yf(t-aT). Consequently,
a

-1VTW T f (t,v) yf(t-a ,v)e dT W ft -a,v).
* a

b.) Translation of the F.T. of f also results in

a translation of the WD of f. If

T F(v) F(v-a)
a

($) and h(t) - F(v-a),

- then Wh(t,v) = W f(t,v-a).
[,f

[.
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Proof. It is known that h(t) e itf(t). Hence

i a(t +)-ia~t -'r)
1% (t'v) f(t +...LI)e 2e el! d Th 2

- f(t +-)f(t --I) e v-a) W (t,v-a).

4*. Modulation by a simple sinusoid.

The previous property may also be stated in terms of a

modulation operator. That is, let

iatN f(t) e f(t).
a

Then (9.5) may be written

Similarly if N O =v e- a F(v) and h(t) e Fiav)N
-a

then (9.4) may be written

An interesting computational rule is a result of (9.4~)

and (9.6). Combining these two properties we get

(8) W MTf(t'v) W f(t-a,v-b).
b a

Let t v 0 and change the sign of the parameters a

and b. We obtain

(9 WMT f (0,0) W f (a,b).
-b -a
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Hence, the WD of a function f may be evaluated at any

point (a,b) in the plane by first translating and modulat-

ing f, then evaluating the WD of the resulting function

at the point (0,0).

5. Multiplication of two functions.

If h(t) g(t)f(t) then

(10) -(t-v) j Wg(tr)Wf(t,v-r)dr.

E. Filtered Functions.

Let h(t) = (g:f)(t), where g is the impulse response

to a linear, time-invariant filter. Then

(11) Wh(t'v) W W(r,v)Wf(t-r,v)dr.

7. Invertibility and Uniqueness.

From (8.3) it is apparent that given a WD W, one can

uniquely invert the F.T. to recover the kernel function

y. Hence, given W(t,v) is a WD, then

T~f ~r 2i eVT
(12) f(t +I)f(t -1) j W(t,v)e dv.

2 2 2r v

Let tI  t +, t2  and we see that

1 t +t iv(t -t 2(13) f(t 1fMt 2 -- W(- 2 v)e dv.

I  1 2 then

If t t , t 0 then

(14) f(t)TT7 1 r W( vt dv.

[>i . . " . i i - - d ~i ..' - L . " .? j .i " . . .- . " -. "" ""
~~~~~~~~........................ ............. :iil ll~ i i'i~ i i iio
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hence the generating function f(t) can be recovered to

within a constant f(O). As in the case of the AF, it

can be shown that this constant must have modulus 1.

Furthermore, by letting tI = 2 t in (9.13) we have

the unusual result that Vt E

(15) }f(t)l2 2 1 T (t,v)dv.

The novelty of (9.15) lies in the fact that the UD is not

always positive. Yet (9.15) says that regardless of the

nature of f, at any particular t, the integral of the

WD over all frequencies results in a nonnegative number.

8. Volume Invariance.

1 rrt

(16) 2T f W(tv)dtdv I Uf! 2

where the L 2-norm of f was defined in equation (1.3).

This is a direct result of (9.15).

9. Analytic Signals.

Let f be the complex representation of the real

signal s(t) as in (A.3). Then

T| W (t-r,v)h(r,v)ir for v 0

(17) Wf (tv) : 0or v' C,

where h(r,v) = (sin 2vr). Equation (q.17) is the

convolution of the WD of the real-valued signal 7(t)

* with the Fourier kernel h(rv).
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I

Proof. Recall (A.6) to sec that

2S(v +) for u > -2v
2

(18) F(v +): S(0) u = -2v

0 u < -2v and

2S(v -u) for u < 2v

F(v -u) = S(0) u = 2v

0 u > 2v.

Temporarily assume v > 0. Hence, using definition (8.7)

we see

(19) uf(t v) 2 2v  u iut .f TT -2v 2

Let

1l for Jul < 2v

P2v 0 elsewhere.

Then (9.19) is

2 (uS u u Sv iut

(20) TAf (tv) f (u) S(v +)S(v - e du.
f P2v 2d

S

It is known (-) sin 2vt -- p2 (u). By the convolution

theorem, since W *-- F, we conclude
s u

(21) W~ (t'v) J ()sin(2vr)W (t-r,v)dr, v > 0.

Should v < 0 then (9.18) states that

.',• . , . .. . , -., - ,.• . . • ,- - , . .-~~~~.>.. ,. . . . . ...... ..... , . . .



F(v +u) 0 for u < -2v
u

F(v -- )= 0 for u > 2v.
2

u u

Hence F(v + )F(v -) 0 Vu IR, and the propertv is

verified.

§10. Examples

Exar, ple 10. Let f(t) p T (t). Then refer to Figure 1

and note that the limits of integration of the WD for

fixed t are T -2T + 21tj to T = 2T - 21tI. Then

for T > 0,

(2(T-ItI) i Vd (V )sin 2v(T-Itl) for Itl<T

J-2(T-Itl ) { for ItI>T.4T A
4T

iT-

/

Figure 13

Note that since f is real and even, the WD has a global

maximum at the origin. Except for a scale factor, the -WD

is the same as the AF.

K-4

. .. . - .. . . - • , . ... .. • b .. . . ." . ° • .
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Example 11.

iat5"."e I t < T
Let f (t)

0 elsewhere.

From (.10) and (10.1) we conclude

2
7-q-y sin[ 2(v-a) (T-1Itl f for I t < T

(2) W(tv)
0 elsewhere.

ixam le 12.

Let f(t) Ae i a t  Vt E P and some AE C.

Note that y(t,) = A 2 eiaT

Tien formally,

2<-.2:"() ~ ~)1 A 2 i aT -iv-1I1

Ad 2e eA 2 6(v-a)

where 6(v) has been previously defined in (1.7).

Example 13.

.a 2

Let f t) e Itj < T.

.a2i-;t

I Define g(t) e and f(t) PT(t). We will find the

'v; D for 7(t) for all time, then use Example 10 and

property 5 to find the WD of f Formally,

, r i (t + )2  _i(t -) 2

, (t,v) I e 2 e 2 2 iVT dT

" iatT -iVT
- J e e dT 2r6(v-at).

0
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Recalling (10.1) and (9.10) we conclude

1 2Wf!(t,v) I€ 26 (r-at)--_ sin[2(v-r) (t-I TI ) ]dr

S 2
S----- ) sin[2(v-at)(t-I TI ] I tl < Tv-at

0 elsewhere.

This mav also be written,

(4) 1,,:f (t v) Wf(tf,v-at).

We see that multi lying a function by a linear FM signal

results in a linear transform of the original WD.

Examnle l_4. Let f be given, and W(t,v) be the WD of

f. Define

1 .1i 2

(5) f (t) (27b) 2  f(t) e
L

We will calculate the WD of f L"

.12 .b 2

Using the transform pair e vf2 Tr I b e- 2

we can formally calculate the FT of fL as

1 .b 2-i~v
Fj(v) i) e F(v).

Use the definition (8.7) and

1 ru iut
W (tv) -- I F (v + )F (v- -)e du
L 27T L 2 L 2

u u -ibuv iut

- 7J F(v + I(v - ) e e du

SWf (t-bv,t).

I|
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11. Central °oments

it is known that the central moments of a function

provide some insight into the shape and character of a

function without '1 ..y-r':[ng it. The following will

7eneralize the n ,:: - -ru moments in to local

an: global mo.ents in . , w-i see that these

moments of the WD are some -'el known quantities in

signal and network analysis.

Let the central moments of ifI  be m m andase ( 0 7.1) 7 I .n?

m2 as defined in (7.) (7.3?) and (7.24). Let the

moments of IF be M I an: and as defined in (7.26)-

(7.28). We will first study the local moments of the WD.

For fixed t, the local average of the WD with

respect to v has been calculated in (9.15) as

(I) n0 (t) W(tv)dv f(t)I

This is the power in f at time t. The local center of

grayity with respect to v is

r dv
(2) n!(t) = r vW(t,v) n (t )

This may be formally calculated using Fubini's theorem and

the F.T. pairs v 2r6'(T) as

I

I

[.
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n (t) f t +T) f(t - )]6'(t) T

2 n-
- t ._-) f(t f .) f t + T f'(t 1) ]6 d t

2-2 2 2 2 -
0

2njt [f'(t f*)ft~ ]

If f is real-valued then nl(t) - C. If f is complex-

valued then (10.3) can be put in a more meaningful form.

Notice that since

ff' -if'] Im if'

then (10.3) is

f'(t) I {d
(4) nl(t) I m Imt- { in f'(t)}.

iot)

Therefore if f(t) a(t)elO(t) we see that

(5) nl(t) ( O'(t).

For complex representations of a real-valued signal

(Appendix A) this is the instantaneous frequency of the

function f. The WD permits the generalization of

instantaneous frequency to arbitrary complex-valued functions.

The local moment of inertia for fixed t is
Ik

(6) n (t) 1 (v-nl(t))2  dv(t,
2 2T nt (t)

r 2 dv 2

2 v W(t v) nn - nl t)

q 0

I - . : : _ .:: . " " : "
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6

The .D is not always positive so interpreting this as

the snread of the WD is not entirely accurate. To

derive some meaning from n 2(t) we must put (10.6) in a
2

different form. Use the F.T. v _* 2r5"(T) to formally

calculate n 2 (t) in terms of f. ,,e see that

12 2(7 n (t),(t 21 f, (t) I 2+f (t) n, ]_n (t)2
7 2(t 4n0(t)

It can be shown that

(8) n2 (t) = 1 Re{ d f'(t)

-( (tt)t-

If f(t) a(t)e i® (t) then

(9) n2 2 lnja(t)j"
2 2 dt

Hence the local second moment of the WD is independent of

the phase of f. Furthermore, for any a IR and any

C > 0,

(10) n 2 (t) 0 if and only if a(t) Ceat.

The sufficiency of the condition is shown by substitution.

The necessity of the condition is shown by letting

d 2

dt

and integrating twice.

Consider now the local moments of the '? with respect 9
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S

to t. Fix v, then

(1?) ! (v) = W(t 'v)dt = (v) 2

S i'arly, the local center of gravity is

(1?)(v)tWT"v d t
.9fI

i.Ti can be shown to be

(14) ) (v) , )  [F(v)F' (v)-F(v)F' (v) ]

cr

. F'(v) d( (v) = m v) -Im -lnF(v)}.

I(vvd V

If F(v) = A(v)e- then

(if) "l(V) : '(v).

Should (v) be a systems transfer function, then (11.16)

is the group delay. Asain the WD permits a specific

definition to be generalized.

By similar calculations, as in deriving (11.9) it

can be shown that the local moment of inertia with respect

to t is

, i1d 2
1

(17) M,(v) - - -- v)2 2 2 .Avjdv

The vlobal moments of the WD are taken over the

entire (t,v)-Dlane, and will be shown to be moments of

the -enerating function, f, and its F.T., F. The

7 7.
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global average of the WD was previously calculated in

(9.16) as

(18) no VIW(tv)dtdv = fFI 2i--' (1 8 no2Tr

il Similarly

(19) N0  + H W(t,v)dtdv - 2

Hence no 0

The global mean or center of gravity with respect to the

variable v is

(20) n : 1 [ vW(tv) dvdt 1 vF(v) 2 v

The last equality results from interchanging the order of

"- -integration and (11.12). Hence the global center of

gravity of the WD with respect to the frequency variable

v is the same as the center of gravity of jF(v)1 2 , where

.. F is the F.T. of f.

In a similar manner, the global mean of the WD with

respect to the variable t is defined as

(21) 2 7 ]] tW(tv) - ] tlf(t)12  2

0

0
The g:lobal moments of inertia are defined as

("1 rr 2W  vdt I I( - 2 1F(v)!2 dvS(22) n ----J (v h ) ( -n ) tIF)v){ 2n

°" " . .' . ° . - " - - o • " " - P . ., - " . " - - . ° " . .. I " o" - " • "

,- ." . "..- .-. '..- ....',..).-~~~~~~~~~~~....... ...... ". ".. .... . .. .. o.. .. .... .. "-..' ." . -: '........
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and

(23) 1 1 I(t-H) 2W(tv) t d  - (t-- 2 Ift 2  dt
2 2r j1j 

-at J 
2

0

We see that the moments of inertia are non-negative and

hence may be accurately interpreted as a measure of the

spread of the UD.

§12 The Uncertainty Princi 2 le

The Heisenberg uncertainty principle (UP) constrains

the moments of inertia of a function, f, and its F.T., F.

Consequently the UP must also constrain the global

moments of the WD. A form of the UP is

(1) 'Itf(t)Wfl1vF(v)l > 2liffl 2 .

In the case of non-centered moments (12.1) may be

also written

(2) (t-a)f(t)'"(v-b)F(v)H! > 1 f 12

where a and b are the respective centers of gravity.

Using similar notation, the global moments (11.22) and

(11.23) may be written

2 1 2 2 1 2N = l(t )ft1

0F

Without loss of generality, assume f and F have hence-

forth been shifted so that ni N 1 = 0. We will now

*- show that the WD cannot be concentrated arbitrarily close

1,
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to the origin. Let x and v be fixed. Then it can be

shown that,

(4) .i 2 1
min(p + y) = 2/.T.

p p

2 2
If x itf(t)2 and v 'vF(v) then this imnlies that

for any p,

2, 2 1 2

(5) p tf(tY + - vF(v) 2
D

Then by (12.1) we conclude that

2 2 1,2,
(6) p 2Itf(t)!2 + -l vF(v)l2  > Hf11 2

p

Using definitions (12.3) with n1  NI  0 this may also

be written

(7) 2 T -1 > 1(7) 2 2 n2
P

In terms of the WD, this is

1 r r 2 2 1 2 r r(8) 2- t +-- v )W(t,v)dtdv jj--- W(t,v)dtdv.

(12.8) may have the following interpretation: For fixed

p 4 L, let

2t2 1 2() 7(t'v) - t + --7 V

p

2Then Vr E TP, p(t,v) = r is a weight function in the
2

integral (12.8), which assigns the value r to all

values of the WD which lie on the ellipse,

" I" " " ' :! :: ::: :
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4

2 2 1 2 2(10) P t + -- v r

p

Hence g(t,v) suppresses the values of the WD near the

origin and amnlifies the contribution of the WD away from

the origin. The inequality in (12.8) means that the vD

cannot be totally concentrated in an arbitrarily small

region about the origin. If, for example, the WD were

to vanish off an ellipse such that r 2 < 1, then inequality

(12.8) would not hold.

The inequality (12.8) does not preclude a highly

4 concentrated WD which has a small contribution far from

the origin. If the WD is to characterize the Heisenberg

uncertainty principle, then we must also prohibit just

such a WD. To see that such WD's are in fact impossible

we need the following theorem [5].

If a > 0, b > 0 and

! rr -!T-(t-r) 2-b(V-s)2

(11) Wab (tv) -j e a W(r,s)drds

Is the Weierstrass transform of the WD W(t,v), then

4

(12) Vt,v E Ih, W (t v) 2-- If(t)12 dt.
ab 1i+2'ab

The Proof of this statement denends upon expanding f in
4I

2
an orthogonal system in L2( ) which is related to Hermite

polynomials and is beyond the score of this paper. T,,Ie mav

use this result for the specific values t = 2r and v 2s,

then (12.11) is

I
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2 2
r rr

(13) W (2r,2s) 1 [
ab 2' 1ab e e W(r,s)drds.ab '27 / T

(12.12) then becomes

2 2
Tr r S

1 a a b 2abt)[2(14) er e W(rs)drds 1 + 2a f(t) dt.

Notice that

(15) 2/ -b1

1+ 2 Va-b i+ 2'ab

hence (12.14) is

2 2
- r 7S

(16) 1-e a e b (r,s)drds > - W(t,v)dtdv.

We now have an inequality using a weight function which,

for fixed a and b, goes to 1 with increasing values

of r and s. This precludes a WD as was previously

described. Therefore from (12.8) and (12.16) we conclude

that the WD cannot be arbitrarily concentrated about

the origin (or in the case n I  0 or N 0, about
11

the center of gravity).

0, . . - . ... . - " ' " - . v . . . -
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IV. EPILOGUE

In the previous chapters two time-frequency functions

-' were studied. Their properties were reviewed and some

applications shown. Attention was directed to their

relationshin to the Heisenberg uncertainty principle.

* . in the next section we will state the relationship between

*-.' . these two transforms and consolidate their similarities and

.*differences.

§13. WD vs. AF

Recall equations(2.9) and (8.6) and we see that the

* AF and the WD are related by a transform similar to a

2-dimensional F.T. (Figure 14).

r(uv)

y \tX, (u,T) W~t,v)

t."<T) TT

Figure 14

Thus

(1) W(t,v) ii X~,~i(ut-v~r,
-X(u,T)e't )dudT ,

and

(2) X(u,T) 2 W(t,v)e i(ut-vT dtdv.

There are three basic differences between the W.

and the AF. First, the WD is always real-valued, while

the AF is, in general, a complex-valued function. The

0 ,,

* * *" . . ' ..
'

.
,
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modulus is frequently used in applications so it is

reasonable, in many cases, to compare the modulus of the

AF to the WD. Only when f is real-valued and

symmetric, is the AF the same as the WD (up to a

scale factor). This was demonstrated in Examples 1 and 10.

The second difference between the AF and the WD

is the manner in which these functions transform trans-

lated functions. The modulus of the AF is invariant to

translations of either f or its F.T. The WD shifts

as its generating function shifts. For this reason,

Claasen and Mecklenbrauker conclude the AF is not well

suited for general signal analysis [131.

Finally, the AF and WD each characterize signal

duration and bandwidth of the generating function f in

different ways. Effective duration and bandwidth of f

are equivalent to partial derivatives of the AF but

equivalent to the global moments of the WD. Consequently,

the W1 was shown to characterize directly the vieisenberg

uncertainty principle. On the other hand, the AF has

an associated uncertainty principle (property 11) which

Is an analogy to the Heisenberg uncertainty principle.

The WD and AF have three basic similarities.

First, each time-frequency transform of f is closely

related to the t-f transform of F = f. The t-f

transform of F is a simple rotation of the t-f trans-

form of f. As such, Hermite polynomials are sometimes



720

associated with these functions. For instance, an

2
orthogonal system on L based on Hermite polynomials

was used by Klauder to achieve highly concentrated AFs

about the origin [8]. This same orthogonal system was

used by De Bruijn in the proofs of his inequalities for

the WD [5].

Another similarity is that both functions transform

quadratic operations on the generating functior to linear

operations on the AF and WD. Therefore, the decompo-

sitions of the AF, introduced in Section 7.2, may be

applied to the WD.

Finally, both t-f transforms yield similar constants

when integrated over the entire plane. In this case we

compare 1XI 2 to the WD. For clarity we repeat (4.19)

and (9.16).

(4.19) 1 IX(u,T)12 dudT : IfH 4

and

1 rr 2
(9.16) 1 JJ W(t,v)dtdv fL2

* 2Let us define a norm on IR as

1X Xt U 2 dT 1/2(3) LrX! 2 C- IlX~u,T)l dudT)
2 2r fjf

0

Then Y L2( ,) because f E L 2(IR). Moyal's formula

is LK,]

0V

S ! I I " I I  " " I " .I" . I I ~ 1- I i i I 1 1 1 
I

I
I

1 
I

, . . . .I I i I I 1 tl 
I

i " t I ' iI i II Ii . II i . . . . . "
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I F W2 (t,v)dtdv f!,4
2 7 J

This gives us a Parseval-like relationshipin I 2

-

W !, X !
2 2'

2 2
Therefore, in the space of L (I2), with the defined

norm, the transform (13.1) is an isometry.

514. Conclusions

Time-frequency functions like the AF and WD are

important in pure mathematics and engineering. They are

functions which transform a function of time into a func-

tion of time and frequency. They inherently embody much

of the theory of Fourier transforms. Study of these

functions provides a richer understanding of the uncertainty

principle and is, therefore, valuable in the field of

harmonic analysis. In the applied fields, a time-frequency

transform helps to visualize the frequency content of non-

stationary functions. These transforms help explain the

intimate relationship between the time and frequency

components of a signal.

The AF is a tool routinely used in radar waveform

design. It is also used in developing the theory of

Fresnel diffraction and Fourier optics [13]. It was shown

to provide a better understanding of linear frequency

modulation and pulse compression. The AF is an important

function in both the applied and theoretic fields.

I
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- The WD has been for many years an asset to the

field of quantum physics. Recent work has shown it to

be a useful tool in signal analysis and suitable for

.hardware implementation [3]. It was also shown to

generalize two common notions in signal analysis;

instantaneous frequency and group delay. The WD is

incompressible and reflects the Heisenberg uncertainty

principle. The WD is also an important function in

theoretic and applied fields.

Time-frequency transforms, like those presented in

this paper, have a broad application. It is the opinion

of this author that such functions may have even more to

contribute in such fields as spectrum estimation, and are

worthy of future study.

0

0

'" "-" ' " "- " " "*-*_'. : -" : ''
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Appendix A. The Complex Siglial

Frequent reference is made throughout this paper to

the complex representation of a real signal. This is also

known as the Gabor representation and the analytic signal.

in this appendix we will define the analytic signal and

explain why it is a useful tool.

in most applications of signal processing techniques,

the signal of interest is a real-valued function of time,

say s(t). As was stated in (3.1), for radar, s may be

modeled as

(1) s(t) a(t)cos(w t+ (t)).
0

'P.i scription is mathematicallv cumbersome and its

Fourier transform has a lot of redundant information since

(2) S(-W) S(W .

Consequeily a complex-valued function f is formed so

that Re{f} s. The Gabor representation is such a

complex-valued function and is defined

(7) f(t) = s(t) + is(t)

where S is the Hilbert transform of s. s is defined

4 CIO s(r) 1
(4) (t) _- dr = s(t)

The Hilbert transform has the useful property that

I

"" < - i. - -" .'- " -' '< .'' " -"" -. -. " . • " " " - ." -' .- v. -. .''.v. . . .'.. ." .. . . ..,. . ..-,-.''. " v .' "'.-.' ..



76

4v

(5) S(w) -i sgn( )S(w),

where S is the Fourier transform of s.
1

This may be verified by letting x(t) - so that

s(t) s(t) ex(t)

and

S(W) S(w)X(W).

Then (A.5) follows from the Fourier transform pair

-i sgn w.
Trt

From (A.3) we see that

, 2S(w) W > 0

(6) F(w) S(UO) + iS(w) S(O) W = 0

0 W < O.

The Gabor representation solves the problem of redundancy,

but using (A.3) in calculations may be equally as

cumbersome as using the original s(t). Consequently, in

many cases an approximation to (A.3) is used in calculations:

i(W 0t+¢(t))
(7) f(t) a(t)e

This approximation becomes exact for narrowband signals.

That is, d-fine

F+( ) (A i t
F (W) f(t)e- dt+2

and

F)r f(w(t) e-iwtdt.
F ( )j=f:t)

I" :! !._ : .: .k _ : :i. :. _. ,~ .i: :: ' :':'- " . ' ' : ::: : " " : . ' .-- .: :': :
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T hen f is narrowband if

F+ () = 0 for all w < 0,

and

F ( ) =0 for all w > 0.

In general, the error in the approximation (A.7) is

c(t) 2 1 -7I r F (M)e dw .m 2- Tr I_- +

This is obviously zero for narrowband signals.
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%A7-en:xB. The Doppler Arproxamation

This appendix will explain the doppler approximation

and why the effect of a moving target on a narrowband

signal mav be modeled as on!v a shift in the carrier

frezuencu.

A radar transmits an electro rr- signal, which

when strikinc suitable surfaces is refiectE and refracted

s i1alr to light If the surface is M...r, the reflecLed

Sfr ecuencv of the signal will avvea- to be different than

that which was transmitted. This is analogous to the

commonly deserved phenomena of a constant-pitch train

whistle aDpearing high as the train approaches and low as

the train passes. This phenomena is known as the doppler

effect.

In the case of radar, should the target be stationary

(in the sense that the target velocity vector has no

component in a radial direction to the radar), then the

time delay of the returned signal will be

2
T - R,

c
0

where P is the constant range and c is the velocity

of propagation. The returned signal is then a time delayed,

0suitably attenuated version of the transmitted sisnal. If

3t(t) is the transmitted signal then the returned sinal is

S (t) st (t-T).

0

0
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If the reflecting surface is moving, then the ranre

becomes a function of time and therefore the time delay

becomes a function of time. Then

s (t) s (t-T(t)).r t

The exact relation between the time delay T(t) and the

range to the target is [61

2 1
(I) T(t) Rt -- T(t) 1.

Defining T(T) = T, (B.1) can be expanded in a Taylor

series about this point;

Tt)(T)(t-T) + I T(T)(t-T) 2 +

The returned signal is then

s (t) s Ct-T(T)-T(T)(t-T) - 1 -..)(t-T)2

r t 2

Use T(T) = T and this is

I 72

(2) s (t) = s C[l-T(T)1[t-T] T(T)[t-T ir t -2 - " "

C

Use standard notation for velocity and acceleration, i.e.

v(t) = R(t) and a(t) = R(t), and differentiate (3.1)

to see that

( 2 )

v (.1)
1+ ......

I c

1.

•L . -. - . .. ,, . . -,: ? . . . : . . ., - - .
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( 2 ..a (T
(1.
c+ 2

c 2

In radar, the velocity of propagation. c, is nearly

the steed of lisht, therefore c >> v(t). (B.2) an(

are

(5) T(T) (2 )v(T)
c 2

(6) T(T) (-2)a(L)c 2

By definition, the doppler effect is the linear

stretching of the time variable in (B.2). Therefore we

only consider the first term in the series (B.2). This

is equivalent to assuming the target velocity is constant

near T so that v(T) v(2). The linear approximation
2

of (3.2) is

(7) s r(t) s st[W(t- ) ],

where

w - v(-r
c

Finally, assume s t  is a narrowband signal. Then

we may write, for fixed w,

i~t

() . (t) u(t)e
t

where

iO)(t).
(9) u(t) a(t)e
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Then the doppler stretching w, of the time variable

of the returned signal may be assumed to apply only to

it
the carrier, e This seems justified for the

perturbation of t would be less perceptible on the

slowly varying function a(t) and 0(t) relative tc the

-ast varying carrier. Hence

iW(w) (t-T)
l0 ~ s (t) u(t-T)er

Define ¢ - to be the doppler shift then
C

i(W- ) (t-T)
(11) s (t) - u(t-r)e

* r

-q

S.!:-.j . " 7 .:.,:.:, :.:-.. - - - ""- h "i..j : - -"'ib -iii: l: . - "j-' '' .
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